数学– category –
-
iとは何か:数を回転させる“循環原理”としての虚数
iとは何か:数の世界を回転させる「循環原理」 私たちが最初に「i」という記号に出会うのは、おそらく数学の授業でこう教わるときだろう。 \( i^2 = -1 \) けれども、それがいったい何を意味しているのか── 多くの人にとって、この一文は謎のまま終わって... -
無限と無の思想が導く持続可能な社会への新たな指針
皆さま、こんにちは。今日は「無限と無の思想が導く持続可能な社会への新たな指針」というテーマでお話しさせていただきます。現代社会において持続可能性への関心が高まる中、東洋の「無」の哲学と西洋の「無限」概念が交差するところに新たな社会モデル... -
複素平面とは何か:実数と虚数がつくる「回転する世界」のしくみ
はじめに:見えない「もうひとつの数の世界」 数には、ふだん私たちが使っている「実数」のほかに、もうひとつの世界があります。 それが「虚数(きょすう)」です。 名前の通り、少し“現実離れ”して聞こえるかもしれません。 でも実は、虚数こそが私たち... -
オイラーの恒等式とは何か:\( e^{i\pi} + 1 = 0 \) が示す、数と宇宙の調和
導入:数学における「美」の極致 数学の世界で「最も美しい式」と呼ばれるものがある。 それがオイラーの恒等式、\( e^{i\pi} + 1 = 0 \) である。 この一行には、数学を支える五つの基本的な数、 \( e \)、\( i \)、\( \pi \)、\( 1 \)、\( 0 \) がすべて... -
虚数解とは:実数の外に広がる「見えない解」の世界をわかりやすく解説
数学における「虚数解(imaginary solution)」とは、 実数の範囲では存在しないように見える解のことです。 たとえば、次のような方程式を考えたとき: \[ x^2 + 1 = 0 \] どんな実数を代入しても、この式は成り立ちません。 なぜなら、どんな数を二乗し... -
Σと∫の違いとは何か:離散と連続がつなぐ二つの「足し算」の世界
Σと∫の違い:二つの「足し算」が描く、離散と連続の世界 物理や数学の式でよく登場する Σ(シグマ)と ∫(インテグラル)。どちらも「足し算」を意味する記号ですが、なぜ二つもあるのか? どう使い分けるのか? 本稿では、これらが表す「離散」と「連続... -
指数関数とは何か:自己を増やす方程式
指数関数とは何か:自己を増やす方程式 「指数関数的に増える」という言葉は、科学・経済・AIの分野で頻繁に登場する。だが、それは単なる「急激な増加」ではない。指数関数とは、自分自身をもとにして増えていくという、きわめて根源的な構造を表している... -
次元と位相:世界のかたちとつながりを考える視点
次元と位相:見えない秩序を探る思考の旅 私たちは「三次元の世界に生きている」とよく言われる。しかし、「次元」とは本当に何を意味しているのだろうか。さらに、「位相(トポロジー)」という言葉を聞くと、数学的で難解な印象を受ける人も多いだろう。... -
内積とは何か:角度・方向・意味をつなぐ数学の本質
はじめに:内積という「見えない角度」 私たちは日常的に「方向」や「力の向き」といった概念を直感的に扱っています。しかし、それらを数学的に正確に表すにはどうすればよいでしょうか。その鍵を握るのが「内積(dot product)」です。内積は、一見する... -
数学の重要公式一覧|全8分野をわかりやすく解説:意味から使い方まで総まとめ
導入:公式は世界を読み解く言葉 数学の公式とは、自然や社会の背後にある「秩序」を最短の形で表した言葉です。数式を覚えることは、世界の構造を理解することにほかなりません。以下では、分野ごとに主要な公式をまとめ、その意味を簡潔に紹介します。 Ⅰ...